
PRACTICAL SOFTWARE™

Re
search XFCN:
A Free HyperCard Utility
By Ari Halberstadt

ABSTRACT

An external function implementation of a general purpose string searching utility for
HyperCard (on the Macintosh). It is possible to search for regular expressions
similar to those used by UN*X's egrep, or for plain text using a very fast algorithm.
Searches can be done on a single input string, or a list of containers in a single card
or in many cards. Output format is flexible, and may be in a special chunk form for
further processing by HyperTalk scripts.

Source code in C is included. The program is free; for distribution terms see the
appropriate sections in the file “Common Manual”.

This manual assumes some knowledge of scripting in HyperCard.

Copyright © 1990 Ari I. Halberstadt

Please see the more complete copyright notice in the file “Common Manual”, and
the sections on distribution in the same file, for details on how to freely distribute
this manual and the software it describes.

This copyright notice must be preserved on all copies of this file. If any changes are
made to this manual you must record them in the section containing the revision
history.

Table of Contents

Sections

Preface

Using Research
Calling research

Checking for errors
Monitoring and canceling execution
Using Research instead of find

Regular expressions
Simple expressions
Matching beginning and end of line
Hiding special meanings
Matching any character
Character classes
Closures – repeated pattern matches
Marking expressions with tags
Grouping patterns with parenthesis
Alternate expressions with the vertical bar

Options
Chunk

Chunks and tags
Chunks and the Separator option
Chunks and the Containers option

Containers
Containers and output format
The StartCharacter option
The StartContainer option
StartCard, FirstCard, and LastCard options
Putting it all together
Replacing HyperCard's find command

Count
First
FirstCard
Global
Ignorecase
Invert
Match
NoBusyCursor
NoMeta
NoPeriodic
NoUserCancel
Number
Separator
StartCard
StartCharacter
StartContainer
UnixMeta

Function descriptions
Functions

"!"
"?"
Error
Matched
Searching

Limitations and bugs
Limitations
Known bugs

Version information
Changes from earlier versions
Future plans

About the program

Appendix A. Quick reference

Appendix B. Metacharacters

Appendix C. Resources used

Appendix D. Revision history

Figures
Figure 1. Searching with the startCharacter option
Figure 2. Searching without the startCharacter option
Figure 3. Searching many containers
Figure 4. Searching many cards

Tables
Table 1. Closures
Table 3. Example chunk expressions
Table 2. Defaults for startCard, firstCard, and lastCard
Table 4. Research limits
Table 5. Functions
Table 6. Options
Table 7. Metacharacters
Table 8. Resources
Table 5. Revision history

Scripts
Script 1. ResearchError
Script 2. GetUserName

Preface

The choice of a name for a new program is always a delicate matter. On the one
hand, one wants a concise and mnemonic name. On the other hand, one does not
want to have a name which will conflict with other existing programs. The name
“Search” certainly fits the first criteria, yet I'm afraid it fails on the second. There are
probably numerous XFCNs out there, all called “Search”, and each one doing
something entirely different. Other names which I considered were “grep”, and
“egrep”, but the program isn't really the same as either of these programs. The name
“find” is already used by HyperCard. I settled on “Research” (short for “Regular
Expression Search”), which is certainly mnemonic, not too long, and fairly unlikely
to conflict with other names.

Using Research

Calling research

When Research is called with only one parameter it does not search for any text;
rather, it interprets the first word of the parameter as a special function to be
executed. When Research is called with more than one parameter, it interprets the
first parameter as a pattern to search for, the second parameter as the input text, and
the third parameter as a list of options which modify the behavior of Research.
When called in this way, Research returns (by default) the text that matched the
pattern. Thus, Research has two basic forms:
research(function)

and,
research(pattern, string, options)

When specifying an option or a function to Research, capitalization of the option or
function name does not matter: "FOOD" is the same as "food".

The simplest way to search for a string is:
get research(regular_expression, input_string)

The regular_expression parameter is the expression being searched for. The
input_string parameter contains the string being searched in. Research returns, by
default, the lines that contained text that matched the regular expression. If nothing
is found, then nothing is returned.

To specify a list of options, you would use the third parameter. Each option is given
as a single word. For instance, to invoke Research using the invert and
IgnoreCase options, you would use the following command:
get research(regular_expression, input_string, "invert ignoreCase")

If you just want to get a string describing the version of Research, you could use
only the first parameter, as follows:
get research("!")

Checking for errors

An error could occur at any time during execution. For instance, Research could
have been passed an illegal parameter, or it could run out of memory, or it could be
unable to find a container to be searched. If an error occurs, Research stops
searching and returns whatever it had found up to the time of the error.

After invoking Research, you should always use the Error function to find out

if Research was successful. The Error function will return empty if it was
successful, otherwise it will return an error code. You can translate the error code
into a descriptive string using the ErrorString XFCN. For instance, the following
script checks for an error and halts all scripts if one occurred:

Script 1. ResearchError
on researchError

if (research(error) <> empty) then
answer "Research error:" && ErrorString(research(error))
exit to HyperCard

end if
end researchError

Monitoring and canceling execution

If Research is executing for longer than about half a second, then it starts displaying
a rotating busy cursor, similar to HyperCard's busy cursor. This cursor may be
deactivated by specifying the noBusyCursor option.

Execution may be canceled at any time by pressing Command-period. Research will
stop searching and will return whatever text it found. The Error function will return
the error code ERR_BASIC_CANCELED.

Using Research instead of find

Research can be used in a manner similar to HyperTalk's find command. The script
researchNext, which is included in the demo stack, jumps to the next occurrence
of a regular expression in a list of containers «script not yet written». This is similar
to a command which uses HyperTalk's find command:
find chars "hello" in field 1

which finds the next occurrence of the string "hello" in field 1. Research is,
however, significantly more versatile and powerful than the find command. For
instance, Research may search through text which is not inside a field, including any
number of named containers, of any type, even scripts of cards and buttons, as
opposed to the find command's single background field. In addition, Research
supports regular expressions, and offers many options which modify its behavior
and the format of the output. Finally, the source code for Research is supplied free of
charge; so, if you know how to program in C, you can improve the program and
tailor it to your needs.

Regular expressions

Research interprets the pattern string as a regular expression. A regular expression
uses a very powerful and concise language for specifying a wide range of character
strings. Many characters in a regular expression have special meanings, and so you
must be sure you understand exactly what each character does. Characters with
special meanings in a regular expression are called “metacharacters”. For instance,
the metacharacter period (.) can match any other character, which is more general
than the letter A, which can only match another A.

Note: The nometa option turns off the use of metacharacters. Using this option
also results in significantly faster searches. All other features of Research are
unaffected, so you can skip this section if you just want to search for a string, and
don't want to learn about regular expressions.

The regular expressions which Research understands were inspired by the UN*X
utilities grep and egrep (grep stands for “Global Regular Expression Printer”, and
egrep is the same with “Extended” added). The following descriptions always refer
to units of text as the default unit of text, which is a line. By using the separator
option it is possible to change the default unit of text.

In the following descriptions of regular expressions, the complete form of a call to
Research has been omitted. When a description shows an expression, it means that
if Research were given this expression, it would match certain strings. For instance,
get research(regular_expression, field "input")

is how you would invoke Research to search for a regular expression in the field
named "input".

Simple expressions

A simple expression contains no metacharacters, and therefore will match only
strings which are identical to the expression. For instance, the following expression
finds all places where global variables are declared in a script:
"global"

Actually, this expression really finds all occurrences of the string "global", so it
would find lines such as
global variable

as well as
put "global" after card field 3

Matching beginning and end of line

The circumflex ^ and dollar sign $ metacharacters anchor the pattern to the
beginning (^) or end ($) of a line. For example,
"on"

matches all lines containing the string "on", while
"^on "

matches all lines starting with the string "on ", and which will therefore probably be
script handlers. Finally,
"^The only little boy in New York$"

matches all lines containing only the string "The only little boy in New York".

The ^ and $ are only treated as metacharacters if they come at the beginning and
end, respectively, of a regular expression.

Hiding special meanings

The backslash \ is a special metacharacter which, when it precedes another
character, takes away any special meaning the character would have. For instance, if
you want a circumflex to appear at the beginning of your pattern, precede it with the
backslash, to get "\^". For instance,
"\^on"

matches all lines containing the sequence "^on". A backslash is also known as the
escape character, so preceding a character with a backslash means it's "escaped".
Notice that a backslash preceding an open or close parenthesis specifies a tag, while
a backslash preceding a digit specifies a tag reference. (These terms are explained
below.)

Matching any character

The period is a metacharacter which matches any character at all. For instance,
".at"

matches the strings "cat" and "bat", as well as "#at" and "!at".

Character classes

A construct called a character class is used to specify a list of possible characters. A
character class is introduced with the open square bracket [, which is then followed
by a list of characters, and finally terminated with the close square bracket]. For
instance,
"[abc]"

will match either a, or b, or c. It is also possible to specify a range of characters to
match. A range is specified by placing a hyphen - between two characters in the
class. For instance,
"[a-z]"

matches the letters a through z, and

"[a-zA-Z]"

matches all lower case and all upper case letters. The characters which will match a
character range are those whose ASCII values fall between the ASCII values of the
lower and upper bounds of the range. Thus, the range
"[A-z]"

matches all upper and lower case letters, as well as all the other characters that fall
in that range of ASCII character values:
[\] ^ _ '

Ranges can be confusing:
"[3-68]"

matches the characters 3, 4, 5, 6, or 8, not the numbers 3 through 68.

To include a hyphen in a character class you can either escape it (i.e., precede it with
a backslash), or place it at the beginning or end of the character class, so that it isn't
confused with a range specification. The hyphen is only special within a character
class, not outside of a character class.

Finally, if a circumflex ^ immediately follows the opening square bracket of a
character class then the character class matches any characters except those in the
class. For instance, while
"[0-9]"

matches any digit,
"[^0-9]"

matches any non-digit. The circumflex loses its special meaning if used anywhere
except the first character of the character class.

Closures – repeated pattern matches

Note: The curly-braces form of a closure may cease to exist in a future version,
which will, however, employ a significantly faster regular expression searching
algorithm. The "*", "+", and "?" closures will still be available.

A number enclosed in curly-braces { } following an expression specifies the
number of times that the preceding expression is to be repeated. For instance,
"a{4}"

matches 4 occurrences of the letter a. Similarly,
"[a-zA-Z]{5}"

matches all words with at least 5 letters. Normally, closures apply only to the
previous character, so "xy{3}" matches an x followed by three y's, not the sequence
"xyxyxy".

The general format of a closure is {n,m}, where n is the minimum number of
repetitions and m is the maximum number of repetitions. A missing n is assumed to
be one, and a missing m is assumed to be infinite. There are a few shorthand
metacharacters for expressing common closures, shown in the following table.

Table 1. Closures

Metacharacter Equivalent Description

* {0,} Preceding pattern is repeated zero or more
times; this is by far the most common closure.

+ {1,} Preceding pattern is repeated one or more
times.

? {0,1} Preceding pattern is repeated zero or once
only.

Marking expressions with tags

Tags are used for marking a portion of a regular expression for later reference. Tags
are specified by preceding them with the two character sequence \(and ending them
with the two character sequence \). Each tag is numbered according to the order in
which it is encountered in the regular expression, from left to right, and a maximum
of 9 tags are possible. A tag is referred to using a tag reference, which consists of a
backslash followed by a single digit from 1 through 9. For instance,
"A \(simple\) example which is very \1"

matches the string "A simple example which is very simple". A more useful
expression would be:
"\([a-zA-Z]+\) +\1"

which matches doubled words (a common typing mistake), such as "the the" and
"Boom boom". To illustrate how more than one tag is used, consider the following:
"\([a-zA-Z]+ \([0-9]+\)\) +\2 \1"

which matches a word, followed by a number, followed by spaces, followed by the
same number which is then followed by the word and number. The string
"Complicated 1234 1234 Complicated 1234" would match this expression. The
following illustration shows the range of characters matched by each tag:

The following regular expression searches for palindromes (words or phrases spelled
the same way backwards as forwards) with four letters:
"\([a-zA-Z]\) *\([a-zA-Z]\) *\2 *\1"

This will match "aaaa", "abba", "noon", "no on", "n o o n", etc.

Grouping patterns with parenthesis

Sequences of expressions may be grouped into one large expression by surrounding
them with parenthesis (and). This is most useful when applying a closure to a large
pattern. For instance,
"(xy)*"

will match a sequence like "xyxyxy", as opposed to

"xy*"

which matches a sequence like "xyyy". Parenthesis may be nested, so
"(Broken (record)+)+"

matches sequences like "Broken record " and "Broken record record record Broken
record record record ".

Alternate expressions with the vertical bar

Alternative expressions are specified by separating them with the vertical bar |. For
instance,
"This program is (excellent|complicated)"

matches the string "This program is excellent" or the string "This program is
complicated". The following expression will find all the handlers and functions in a
script:
"^on |^function "

Actually, this expression could be more concisely written as
"^(on|function) "

Options

If there are three parameters to Research, then the third parameter is interpreted as a
list of options. Each option is separated from the other options by spaces. Following
is a complete, alphabetical, list of the options.

Chunk

Instead of outputing the complete matched input line, the output is in a form giving
the start and end characters of the matched portion of the input line. This form is
readily converted into HyperTalk chunk expressions, which have the form "char a to
b of line c". However, to conserve space, the connecting words are omitted, so the
output will be "a b c". Chunk expressions are output one per line, where the chunk
expressions on each line refer to a single match on a single input line. Typical chunk
expressions are

"1 27 3"
"4 4 5"
"56 56 103"

which are equivalent, respectively, to "char 1 to 27 of line 3", "char 4 of line 5", and
"char 56 of line 103".

Notice that Research normally finds only the first occurrence of the search pattern in
each input line. To find all occurrences, you can use the global option.

Chunks and tags

If there are tagged expressions in the regular expression being searched for, then the
first item in each chunk description gives the entire range of text that was matched,
and subsequent items give character ranges in the form "char 3 to 15" for each tag.
For instance, the following chunk expression

"7 54 13,10 15,,,20 30,,,,,"

indicates that the regular expression matched characters 7 to 54 of line 13, that tag
number 1 matched characters 10 to 15 of the same line, and that tag number 4
matched characters 20 to 30 of the same line.

Chunks and the Separator option

If a separator which is not the return character is used (see description of the

separator option) then the units of text are no longer lines. Therefore, chunk
expressions will be slightly different. The character positions will be specified as
offsets from the start of the input, not the start of the current line. For instance,

"123 154 23"

means that the pattern matched characters 123 to 154 of the input, and that this was
the 23rd input unit (as opposed to input line). Another example shows how this
would modify output for an expression with tags:

"123 154 23,130 135,,,,140 142,,,,"

The first part of this example is the same as the previous example; the second part
indicates that the first and fifth tags matched, respectively, characters 130 through
135 and characters 140 through 142.

Chunks and the Containers option

The containers option also modifies the format of a chunk expression. The first
item of the chunk expression now has more numbers appended to it (so that there are
4 or 5 words, instead of the usual 3 words). The 4th word specifies the container in
which the match was found, and the 5th word specifies the card in which the match
was found. The 5th word will only be present when at least one of the startCard,
firstCard, or lastCard options are specified along with the containers option.
For instance, the following command searches for the pattern "^(on|function)" in the
containers "script of button 1", "script of button 2", and "script of field 1" in cards 1
to 4:

research("^(on|function)", "script of btn 1,script of btn 2, script
of fld 1", "containers startCard 1 firstCard 1 lastCard 4 chunk")

The chunk expressions returned by this command could be:

Table 3. Example chunk expressions

Expression You should interpret as

1 2 1 1 1 char 1 to 2 of line 1 of script of btn 1 of cd 1
1 2 1 2 1 char 1 to 2 of line 1 of script of btn 1 of cd 1
1 8 2 3 2 char 1 to 8 of line 2 of script of btn 2 of cd 2
1 2 10 3 4 char 1 to 2 of line 10 of script of fld 1 of cd 4

Containers

The input string is interpreted as a comma separated list of containers whose
contents must be searched. For instance, the following command searches the
HyperCard containers "field 1 of card 4" and "script of button 1" for the string
"wonderful":
research("wonderful", "field 1 of card 4,script of button 1",
"containers")

The above command is equivalent to — but more efficient than — the

following commands:
put research("wonderful", field 1 of card 4, "containers") into tmp1
put research("wonderful", script of button 1, "containers") into
tmp2
put tmp1 & tmp2 into result

Containers and output format

If more than one container is being searched for, as in the above example, then each
output string is preceded by the name of the container (the container's name is
terminated with a comma). For instance, if the line "-- this is a wonderful planet"
were matched in the container "script of button 1", then the output would be

script of button 1,-- this is a wonderful planet

If the count option were specified in addition to the containers option, and if 4
matches were found in the container "field 1 of card 4" and 5 matches were found in
the container "script of button 1", then the output would be

field 1 of card 4,4
script of button 1,5

When used with the number option the line number comes after the name of the
container. So, if the above example matched line 4 of a container, the output would
be:

"script of button 1,4,this is a wonderful planet"

The StartCharacter option

This option may be used with or without the containers option. It is described
here due to its similarity and relevance to the startContainer and startCard
options.

The next word following the startCharacter option specifies the first character
from which to start searching. The word should be an integer, giving a character
offset into the container.

How the search proceeds

The search proceeds from the start character, up to the end of the input, and then
wraps around to the start of the input and continues until the start character is
reached. For instance,

research(findMe, script of card 1, "startCharacter 500")

First skips to character 500, searches up to the end of the script, and then wraps
around and searches from character 1 up to character 500.

The following illustration should help clarify what is going on. We begin searching
at the gap between the gray and black arrows. We then proceed along the path of the
black arrow. When the end of the container is reached, we wrap around to the start
of the container, and follow the path of the gray arrow. We finally stop searching
when we've again reached the gap between the arrows. The “enter from previous
container” and “exit to next container” arrows represent what happens when
searching more than one container, a process which is elaborated on in the following
sections. Contrast this illustration with the next illustration.

Figure 1. Searching with the startCharacter option

The second illustration shows what normally happens in a container or input string
when the startCharacter option hasn't been used. In this case, the start character
is simply zero, so that the gray arrow is non-existent. We therefore only follow the
path of the black arrow. Incidentally, this is what happens when we're searching any
container other than the container specified with the startContainer option.

Figure 2. Searching without the startCharacter option

The StartContainer option

The startContainer option is very similar to the startCharacter option, except that it
applies to containers instead of characters. The next word following this option
specifies the first container from which to start searching. The word should be an
integer giving the item number of the container in the list of containers passed to
Research. For instance,

research(findMe, "field 1,field 2,field 3", "containers
startContainer 2")

sets the start container to "field 2".

How the search proceeds

The search proceeds from the start container, up to the end of the input, and then
wraps around to the start of the input and continues searching until the start
container is reached again. The following figure illustrates this process. The black
arrows show the first phase of the search (during which we search from the start
container through the last container, and then continue on to the remainder of the
search) and the gray arrows show the second phase of the search (during which we
search from the first container, and then reenter the start container). This figure
assumes that we're searching more than one card, as described in the following
section. If we were searching only the current card, which is the default, then the
arrow exiting the last container would wrap around to the arrow entering the first
container.

Figure 3. Searching many containers

StartCard, FirstCard, and LastCard options

The startCard, firstCard, and lastCard options allow you to search through a
list of containers in more than one card. With each of these options, the next word in
the options list is a number specifying, respectively, the card from which to start
searching, the first card to search, and the last card to search. Any one of these
options may be omitted, and if so, it will be assigned a default value, as shown in the
following table:

Table 2. Defaults for startCard, firstCard, and lastCard

Option Default Equivalent HyperTalk expression

startCard current card number(this card)
firstCard 1 1
lastCard cards in stack number(cards)

How the search proceeds

The search starts from the start card, proceeds through the last card, then wraps
around to the first card, and finally continues up to the start card. The following
figure should help clarify this process. As before, the black arrows show the first
phase of the search (during which we search from card 4 through card 6) and the
gray arrows show the second phase of the search (during which we search from card
2 up to card 4).

Figure 4. Searching many cards

How Research gets the
contents of each container

To get the contents of each container, Research must append the string " of card
cardNumber" to each container name, where cardNumber is replaced by the
number of the card being searched. For instance, if the container's name is

"script"

then, when searching card number 3, the string "script of card 3" is appended,
resulting in the name

"script of card 3"

Similarly, if the container's name is

"script of bkgnd btn 3"

then the resulting container, when searching card 3, will be

"script of bkgnd btn 3 of card 3"

Research tells HyperCard to evaluate the expression formed by the name of the
container, and HyperCard then returns the contents of the container to Research. If
HyperCard could not evaluate the expression, then Research returns the error code
ERR_BASIC_HYPERCARD.

Some Examples

The following examples show how the startCard, firstCard, and lastCard
options may be used.

The following command

research("person", "field 1", "containers¬
startCard 4 firstCard 3 lastCard 5")

searches the container "field 1" in cards 4 through 5, and then searches the same
container in card 3. The search is actually done on the values of the expressions
"field 1 of card 4", "field 1 of card 5", and "field 1 of card 3".

The following command

research("person", "field 1", "containers firstCard 3")

searches the container "field 1" in cards 3 through the last card in the stack.
Assuming that the we're currently in card 5, then we first search from card 5 through
the last card in the stack, and then we search cards 3 and 4.

Putting it all together

The options startContainer, startCard, firstCard, and lastCard are used
only with the containers option. The startCharacter option is usually also used
with the containers option, but can be used on a regular input string. All these
options were designed to function together smoothly. While reading the paragraphs
that follow, please keep in mind the illustrations showing how Research searches a
stack, a list of containers, and a single container.

Each option has a default value, so that when none of these options is specified
when you call Research, the default behavior is to simply search the contents of the
input string from beginning to end. When the startCharacter option is used, the
search wraps around to the start of the input string, in a manner similar to that of
most text editors and word processors.

Research extends this wrap-around method of searching to deal with HyperCard's
extensions to simple text: multiple fields, containers, and cards. Thus, when the
startContainer option is also used, the search starts from the start character in the
start container, proceeds up to the end of the start container, and then goes on to the
first character of the next container in the list. When the last container in the list is
encountered, we loop back to the first container (which may be different from the
start container), and search the entire contents of the subsequent containers, until we
again reach the start container. Finally, we search from the first character of the start
container up to the start character of the start container.

Finally, the startCard option is used to specify the starting point in the hierarchy
of objects. We search from the start card in a manner similar to that described in the
previous paragraph. The only difference is that instead of immediately reentering the
first container on the same card, we instead advance to the first container on the next
card. We continue searching up to the last card, and then wrap around and search

from the first card up to the start card. Once we again reach the start card, we reenter
the first container, and proceed to search up to the start container, as described in the
previous paragraph.

Replacing HyperCard's find command

Why I went to such lengths to give Research the flexibility described in the
preceding paragraphs will become apparent when one considers the problem of
replacing HyperCard's find command. As you probably know, the find command
starts from the current location in the stack and searches every following field, in the
current card and in subsequent cards, until it either finds a match, or it has searched
the entire stack.

Research can be made to do something very similar to the find command. We use
the startCard, startContainer, and startCharacter options to specify the
current location in the stack, and the chunk option to get the location of the found
text. The following command could serve as the basis for a more powerful substitute
to HyperCard's find command:
research(findMe, "field peopleField, field addressField, card field
commentsField",

"firstCard" && number(first card of bkgnd peopleBkgnd) &&
"lastCard" && number(last card of bkgnd
peopleBkgnd) &&
"startCard" && number(this card) &&
"startContainer" && currentFieldNum &&
"startCharacter" && currentCharacter &&
"chunk nometa first")

In this command, we can get the current field and character from the "selected"
operations of HyperTalk (such as selectedChunk). We use the first option to limit
the search to the first successful match, and we use the firstCard and lastCard
options to limit the search to the cards of our list of people. The chunk expression
returned by Research can be used to jump to the card and field containing the found
text. If we remove the nometa option, then we can search the fields using regular
expressions.

Count

Suppresses normal output and returns instead a count of the number of lines that
matched the pattern.

First

The search terminates as soon as the first match is found.

FirstCard

See description of the containers option.

Global

Finds all unique occurrences of the pattern in the line, instead of just the first
occurrence (the default). This option automatically turns on the chunk option.

Ignorecase

Ignores character case in comparisons, so that lower case letters match upper case
letters and vice versa. Unfortunately, characters with diacritics are still
differentiated, so that å is not the same as Å, even though a is the same as A.

Invert

Inverts the search, so that only lines not matching the pattern are found.

Match

Returns true if there was at least one successful match, otherwise returns false. The
following script demonstrates one situation where this option could be useful:

Script 2. GetUserName
-- Ask for user's name.
-- The script accepts the abbreviations "ari",
-- "halberstadt", or "aih" for the name "Ari
-- Halberstadt".
on getUserName

ask "What is your name?"
put research("ari|halberstadt|aih", it, "match¬
ignorecase") into match
if (match = true) then

put "Ari Halberstadt" into userName
else

put it into userName
end if

end getUserName

NoBusyCursor

Turns off display of the rotating beach-ball while searching. Normally, the beach-
ball only appears if the search takes longer than half a second. This option is useful
for longer searches in stacks where the rotating beach-ball is inappropriate.

NoMeta

All metacharacters are ignored in the pattern parameter, so that it is not interpreted
as a regular expression. This option causes Research to use a very efficient fixed
string searching algorithm called the Boyer-Moore-Gosper string searching
algorithm, resulting in much faster searches than those possible with full regular
expressions.

NoPeriodic

Turns off all periodic actions, such as updating the rotating beach-ball and

checking for Command-period events. This could help speed up some searches.

NoUserCancel

Doesn't allow the user to cancel a search by pressing Command-period.

Number

Precedes each output line with the line number followed by a comma. For instance,
if the pattern matched line 27, then the output would be:

"27,this line was matched"

This option has no effect when used with the chunk option.

Separator

Specifies a different character to use as a separator instead of the default return
character. The first character of the word following the option is used as the
separator character. If no word follows, then the entire input is treated as one giant
string. To use a space or a tab as the separator precede the character with a
backslash. For instance,

"separator ,"

will use a comma as a separator, while

"separator \" & space

will use a space as the separator. Remember that no regular expression matches the
separator character.

Changing the separator character from the default has several effects. First, the ^ and
$ metacharacters don't match the beginning and end of a line, instead they match the
beginning and end of the current unit of text. Second, when output is in chunk form
(specified using the chunk option), the chunk expressions use character offsets
from the start of the input text, instead of offsets from the start of the matched line.
Finally, the number and count options no longer count lines, instead they count
input units.

StartCard

See description of the containers option.

StartCharacter

See description of the containers option.

StartContainer

See description of the containers option.

UnixMeta

Uses UN*X style metacharacters. This is the default.

Function descriptions

Functions

This section contains an alphabetical list of all of the functions implemented.

"!"

Syntax

string research("!")
Description

Returns a string giving the version of Research, the full name of the program, the
author, a copyright notice, and the date and time of compilation. The string has the
basic form “Version 0.9, Research XFCN, by Ari Halberstadt, Copyright © 1990,
date time”.

Examples

get research("!")

"?"

Syntax

string research("?")
Description

Returns a string giving a brief summary of the functions and call syntax for
Research.

Examples

get research("?")

Error

Syntax

error research(Error)
Description

Returns the number of the error set by the last function executed. If the last function

was executed successfully then returns empty.

Examples

get research(error)

Matched

Syntax

Boolean research(Matched)
Description

Returns true if the previous search found at least one match, otherwise returns false.

Examples

get research(matched)

Searching

Syntax

string research(pattern, input[, options])
Description

Searches for the pattern in the input. Returns lines containing matches, or empty
if nothing was found. If any options are given then this function will behave
differently (see descriptions of options above).

Examples
get research(if, script of card 1, invert nometa)

-- returns all lines not containing the word if
get research("^ *then *$", script of card 1)

-- returns all lines with only the word "then"

Limitations and bugs

This section describes any limitations on the size and number of data that the
program may manipulate. Also discussed are any known bugs, with suggested ways
to work around them.

Limitations

This section lists various minimum and maximum sizes for Research. All limits may
be smaller depending on the availability of memory and other computer resources. It
is unlikely Researchwill actually encounter an error associated with the exhaustion
of available memory since HyperCard is more likely to quit first.

In the following table, the value represented by Integer is 32,767 and the value
represented by LongInt is 2,147,483,647.

Table 4. Research limits

Item Limit

Length of input LongInt (HyperCard can only pass the first 32000 characters
to Research)

Length of output LongInt (HyperCard can only store the first 32000 characters)
Closure repetitions 255
Expression size 255 characters (less depending on complexity)
Plain pattern size LongInt (when nometa option is used)
Container name 255 characters (less if card numbers must be appended to the

name)

Known bugs

This section is included for updates on possible and real bugs, and for the
dissemination of temporary solutions. Pseudo-bugs will also be reported here (a
pseudo-bug is defined as “weird behavior deriving from the correct definition of the
software”).

• Though the program appears to work correctly, I am still not convinced that the
regular expression compiler always produces a correct NFA (non-deterministic
finite state automata).

• The regular expression algorithm I use is fairly slow. I intend to incorporate a
better regular expression compiler and a faster matching

algorithm in a future release. I will probably use the Free Software Foundation's
GNU grep programs.

Version information

This section describes features that have changed from previous versions. Also
discussed are plans for the future of this program.

Changes from earlier versions

There have been no earlier versions.

Future plans

I intend to use a more efficient algorithm for regular expression pattern matching,
and perhaps to add a regular expression evaluator for metacharacters used by MPW.
I will probably move the regular expression code into a separate code resource
which may be loaded as needed (thus MPW metacharacters can be used simply by
substituting a different resource). I also may add a capability to search for more than
one expression (or at least more than one fixed pattern) at a time.

About the program

«SECTION NOT YET AVAILABLE»

Appendix A. Quick reference

The following table is an alphabetic list of all of the functions implemented, the
types of data they return, and their syntax.

Table 5. Functions

Returns Syntax

string research("!")
string research("?")
error research(Error)
Boolean research(Matched)
string research(pattern, input[, options])

The following table lists all of Research's options, along with a short description of
each option.

Table 6. Options

Option Description

Containers The input string is interpreted as a comma separated list of
containers. You can use the startCard, firstCard, and
lastCard options to specify a range of cards to search. The
startContainer option is useful when replacing HyperTalk's
find command.

Chunk Output is in an abbreviated chunk format.

Count Counts number of matches.

First Search terminates after first successful match.

Global Every unique occurrence is found, instead of just the first
occurrence. Automatically turns on the chunk option.

Ignorecase Ignores upper/lower case distinctions when comparing letters.
Has no effect on letters with diacritic marks.

Invert Finds lines not matching the pattern.

Match Returns true if there was at least one successful match.

NoBusyCursor Suppresses display of the rotating beach-ball.

NoMeta Doesn't interpret metacharacters. Significantly faster (but more
limited) than full regular expressions.

NoUserCancel Doesn't allow the user to cancel using Command-period.

NoPeriodic Suppresses all periodic actions.

Number Numbers output lines.

Separator Next word specifies a different separator character to use, instead
of the default return character.

StartCharacter Starts searching from the given character offset, and then wraps
around to the start of the input and continues searching up to the
character offset. Especially useful when replacing HyperTalk's
find command.

UnixMeta Uses UN*X style metacharacters. This is the default.

Appendix B. Metacharacters

The table below summarizes all of the metacharacters used.

Table 7. Metacharacters
c any non-special character c matches itself
\c turn off any special meaning of character c, unless c is (,), or a digit
^ beginning of line
$ end of line
. any single character
[…] any one of characters in …; ranges like a-z are legal
[^…] any one of characters not in …; ranges like a-z are legal
\n when the n'th \(…\) matched (n is a digit from 1 through 9)
r{n} repeat previous expression n times
r{n,m} repeat previous expression a minimum of n times and a maximum of m

times
r* zero or more occurrences of r
r+ one or more occurrences of r
r? zero or one occurrences of r
r1r2 r1 followed by r2
r1|r2 r1 or r2
\(r\) tagged regular expression; can be nested
(r) regular expression r; can be nested

Appendix C. Resources used

This appendix gives a complete list of resources needed by this program. These
resources must be installed in your stack for the program to work (see the section on
installation in the common manual).

The following table lists the resources with their default IDs and names, along with
a short description of the data contained in each resource and how the resource is
used by the program. The resource of type TABL is described in the common
manual.

Table 8. Resources

Type Name Description

XFCN Research The little XFCN whose purpose
it is to load, lock, and call the PROC resource.

PROC Research The resource containing the
executable code.

STR# Research:ResourceMap Map of resources
used by BinaryTree.

STR# Research:Info Version and usage information.
TABL Research:Functions The names of the

functions.
TABL Research:Options The names of the

options.
CURS Research:Busy:0 Four cursors are used for

the rotating beach-ball which is displayed
while searching.

Appendix D. Revision history

This section is to be used for recording any changes made to this manual. This is
necessary since I do not want inconsistencies or mistakes introduced by others to
reflect on my reputation, and, if the revisions improve this product, then the person
who made the improvements should receive full credit. For consistency, please enter
dates as Year-Month-Day.

Table 5. Revision history

Date Name Comments

90-07-18 Ari Halberstadt This is an example entry
90-07-11 Ari Halberstadt Version 0.9

